
Work-Centered Support System Technology: A New Interface Client
Technology for the Battlespace Infosphere

Robert G. Eggleston,
Michael J. Young

Air Force Research Laboratory (AFRL/HE), WPAFB, Ohio 45433, USA,
&

Randell D.Whitaker
Logicon Technical Services, Inc., Dayton, Ohio

Abstract

Information superiority is a strategic goal of the US Air Force. To
achieve this goal the Air Force aims to produce a battlespace infosphere
that will provide an unprecedented degree of connectivity and availability
of raw data and value-added information for warfighter use. The essential
challenge of the infosphere is to be able to provide the right information,
at the right time, in the right form to enable warfighters to take effective,
coordinated action. Although the infosphereÕs core web and agent
technologies are clearly able to provide a heterogeneous infosphere,
improved interface technologies are also needed to address problems of
information overload and how to provide support to specific end-users
without the support tools themselves becoming an impediment to task
performance. We have developed a prototype Work-Centered Support
System software client as a means to address these interface issues. The
WCSS approach achieves effective support in a software agent
environment by blending direct manipulation, work field organization, and
decision, collaborative, and product development aiding in a manner that
is tailored to both formal and informal characteristics of user work. In
this paper we describe the philosophy behind and characteristics of the
WCSS technology. We illustrate the technology with a discussion of an
interactive WCSS prototype designed to improve support to military airlift
mission planners at the headquarter level.

Key Words: Collaborative Support, Decision Aiding, Direct Manipulation, Graphical User Interface,
Human-Computer Interaction, Information Overload, Interface Agents, Network-Centered Interface
Design, Visualization, Work Centered Support System

Work-Centered Support System Technology: A New Interface Client Technology
for the Battlespace Infosphere

Robert G. Eggleston,
Michael J. Young

Air Force Research Laboratory (AFRL/HE), WPAFB, Ohio 45433, USA,
&

Randell D.Whitaker
Logicon Technical Services, Inc., Dayton, Ohio

Abstract

Information superiority is a strategic goal of the US Air Force. To achieve this goal the Air Force aims to
produce a battlespace infosphere that will provide an unprecedented degree of connectivity and availability
of raw data and value-added information for warfighter use. The essential challenge of the infosphere is to
be able to provide the right information, at the right time, in the right form to enable warfighters to take
effective, coordinated action. Although the infosphereÕs core web and agent technologies are clearly able
to provide a heterogeneous infosphere, improved interface technologies are also needed to address
problems of information overload and how to provide support to specific end-users without the support
tools themselves becoming an impediment to task performance. We have developed a prototype Work-
Centered Support System software client as a means to address these interface issues. The WCSS
approach achieves effective support in a software agent environment by blending direct manipulation, work
field organization, and decision, collaborative, and product development aiding in a manner that is tailored
to both formal and informal characteristics of user work. In this paper we describe the philosophy behind
and characteristics of the WCSS technology. We illustrate the technology with a discussion of an
interactive WCSS prototype designed to improve support to military airlift mission planners at the
headquarter level.

Key Words: Collaborative Support, Decision Aiding, Direct Manipulation, Graphical User Interface,
Human-Computer Interaction, Information Overload, Interface Agents, Network-Centered Interface
Design, Visualization, Work Centered Support System

1.0 Introduction

It is generally recognized that the ability to collect,
integrate, synthesize, manage, and utilize information
is critical to the success of military operations.
Indeed, as greater parity is achieved through the
world in terms of the implements of warfare, the
ability to achieve information superiority becomes
even more important to successful military
operations. Like e-commerce in the commercial
sector, the Air Force is investing in software agent
and web-based technologies as a means to improve
connectivity and enhance information availability and
utilization in warfare. The vision is to exploit these
and other technologies to produce a Joint Battlespace
Infosphere (JBI) as a means to obtain information
superiority (SAB Report, 1999).

While the JBI may be envisioned in many different
ways, the central challenge of the infosphere is to aid

the warfighter at all echelons by providing the right
information, at the right time, in the right form to
enable coordinated, effective, and efficient military
operations. Stated more globally, the goal of the JBI
is to improve and shorten decision and execution
cycles.

Clearly web and agent technologies, in principle, are
able to smooth over connectivity issues associated
with legacy Òstove pipeÓ systems, make accessible an
unprecedented amount of data, support application
sharing, and mediate long-distance collaborations. It
is equally clear these same benefits of a web-based
enterprise system for military utilization introduce
new challenges for the design of user interface clients
as software components of the JBI.

The potential for information overload obviously
may be exacerbated by the JBI unless each warfighter
has an effective interface client that focuses

information on work at hand. Perhaps less obvious is
that software agents operating in the service of a user
may induce confusion and invite errors in
understanding. This phenomenon has been called
automation surprise and is a known problem with
highly automated flight management systems (e.g.
Sarter and Woods, 1997). Thus, on one hand
software agents may reduce cognitive burden by
fusing data into information and automating certain
work tasks, but on the other hand they may increase
cognitive burden and degrade decision making and
execution by operating in a hidden and largely
independent manner. We need interface technology
that is able to harness the power of web-technologies
like software agents while avoiding or at least
mitigating the unintended consequences of their use
in a JBI.

We believe interface clients of the JBI should be
designed as tailored Work-Centered Support Systems
(WCSS). The user interface must be regarded as a
fully integrated support system, and not just a set of
displays and controls or a graphical user interface
that provides access to utilities and discrete
application tools. A unified WCSS is needed to
minimize off-task cognitive demands placed on the
worker that can result from interacting with a
heterogeneous set of information sources and work
artifacts, and to improve the speed and quality of task
decision making. In this paper we describe the
WCSS technology mainly from a technology design
perspective. We identify defining characteristics of
the technology and illustrate how three design
principles are embedded in a WCSS interface client
used to support airlift planing and replanning work.

2.0 Work-Centered Support System (WCSS)

Work-Centered Support System(WCSS) technology
may be regarded as both a software interface client
technology and a design technology. As an interface
client technology it specifies characteristics of a
software architecture that dictate features of the
control structure, object model, and methods used to
implement a specific interface client. As a design
technology it specifies design principles and
conceptual structures that are used to define the form,
content, interaction and overall behavior of the
interface client. Further, it includes strategies for
reducing work complexity for the user. From the
userÕs perspective, a WCSS appears as a graphical
user interface with embedded support tools in a
work-centered organizational structure. The goal of
the technology is to provide an integrated and
tailored support system that is sensitive to the current
context state and offers support to work in a flexible

and adaptable manner. This paper discusses WCSS
technology features mainly in terms of design
principles and concepts and how they are used to aid
an employee cope with work complexity.

Broadly speaking, work may be defined as Òthe
professional responsibilities and activities of a
workerÓ (Vicente, 1999). Typically, work is thought
of functionally as a set of tasks to be performed to
accomplish a desired goal. The latter view invites the
notion that a WCSS should support individual tasks
that are needed to produce the outcome artifact. This
is certainly true, but it is an incomplete view. The
problem with this view is that the worker normally,
partially or completely, defines new aspects of a task
during the course of working. If we are going to be
able to handle these emergent aspects of work, then
we must also be able to support work indirectly,
because we do not know before hand some of the
tasks/activities that might benefit from support. The
WCSS addresses this problem by using structural
(organizational) means to represent relevant features
of the work domain in the user interface client. This
approach enables the WCSS to be compatible with
flexible and adaptive changes made by the user to
meet unexpected or unplanned contingencies.

As an interface client technology a WCSS constitutes
the layer of a software application that is devoted to
the user interface. In a web-based enterprise
environment, it constitutes a software client module
that connects a user to the network environment for
the purpose of supporting the range of work assigned
to the user. In the network environment, a worker
may use a large array of software applications and
databases to accomplish work goals. The goals of the
WCSS technology are to provide a homogeneous and
unified work interface to this heterogeneous and
diversified environment, and to assist the user in
completing work tasks in an efficient and effective
manner. We translated these desired goals into five
objectives for each WCSS product:

I. Maximize explicit reference to task domain
elements in the on-screen information
display.

II. Maximize cross-reference among
information displays and analysis tools.

III. Minimize procedural costs for accessing and
retrieving relevant information.

IV. Maximize effective fusion of data from
multiple databases that need to be consulted
to complete work tasks.

V. Minimize perceptual, cognitive, and motor
burden associated with identifying, seeking,

or interpreting relevant information and
producing work artifacts.

Different approaches may be taken to meet these
design objectives; however, to support adaptive
behavior in an efficient manner a WCSS must have at
least three global characteristics.

§ Integrated direct and indirect methods of aiding
within each support tool.

§ Tailored and context-sensitive support.
§ Single organizing framework across the support

tool set.

By direct support, we mean a WCSS uses methods
that call attention to a situation or problem relevant to
the obtainment of a work goal or that actually
accomplishes some aspect(s) of work for the user
(once given authority) without further user
involvement. A WCSS also provides support by the
way it presents and organizes information. An
important method used to implement this type of
indirect aiding involves the use of a kind of state
space representation of the work domain.
Representing the domain of work as a state space in
work-centered terms, for example, can create a
visualization that allows the user to detect a problem
without the need to provide a direct alert or cue.
Both direct and indirect aiding methods can be used
to complement each other. In some instances a direct
alert may be distracting or unable to provide
sufficient information about the situation that is more
easily obtained from indirect aiding. In other
instances a direct alert may be needed to insure a
critical incident is detected in a timely manner. A
WCSS attempts to blend the use of both direct and
indirect aiding in a way that exploits the benefit of
each type while avoiding the potential cost each may
impose. Further, within a WCSS, both types of
support may be aimed at aiding different aspects of
work, such as information finding, decision making,
collaboration, or product development.

The second global characteristic of a WCSS
addresses the form of aiding it employs. Aiding
needs to be sensitive to business rules and other
factors that serve to limit or constrain what and how a
worker can resolve a problem. The form of the aid,
therefore, must be sensitive to the prevailing work
context and state. This means an aid needs to be
tailored to local conditions. Thus, for example,
decision support may be provided in one situation by
presenting a list of options and in another by using a
probe question. Like the intelligent employment of
direct and indirect aiding types, the use of tailored
and context sensitive forms of aiding also increases

the odds the aid itself will not impose a work cost
during its employment. In other words, there is a
lower likelihood the user will have to devote time and
cognitive resources focused on how to understand the
aiding or use the aiding facility rather than being able
to naturally understand or deploy the tool
immediately on the work problem. The major
challenge in designing a WCSS is to figure out how
to provide tailored, context-based support in a way
that is responsive to flexible and adaptable behavior
of the user.

The third characteristic addresses the issue of how to
make an interface client consisting of individually
tailored support tools congeal into a well-formed,
single support system. The basic solution is to use a
single organizing framework that spans all the
support tools that comprise the WCSS system. The
use of a desktop metaphor serves as an organizing
framework for a basic human-computer interface.
While this framework is tool centered (focused on the
computer) a WCSS needs a framework that is work-
centered (focused on the nature of work for a
particular user). An organizing framework acts as a
backdrop for all display representations used in the
WCSS and thereby reduces its complexity for the
user. Further, a single framework provides a referent
that can be easily incorporated into the userÕs mental
model, and this serves as another avenue by which
work complexity can be reduced.

3.0 WCSS Design Principles

All of these global characteristics are intended to
facilitate ease of use of the WCSS in a manner that
minimizes work complexity as experienced by the
user under dynamically varying task conditions. In
an effort to achieve these characteristics, we have
formulated and used three design principles that are
manifested directly in a WCSS interface client. The
three design principles are:

♦ Use a single ontology that expresses work in
terms familiar to the user community.

♦ Represent the work domain to provide indirect
aiding.

♦ Decompose complex work into smaller chunks
by employing the Focus Method.

3.1 Work-centered ontology. A single ontology
pervades the WCSS concept. An ontology is the set
of terms, meanings and relations between terms that
captures or represents some subject matter. A task or
work domain ontology is a taxonomy of terms and
associated meanings used by a worker to think about
work tasks and problems and to produce work

products. An ontology acts as the organizing
framework for the entire support system. It provides
the constructs to be represented on the display
surface of the interface as objects, icons, and terms
used; hence the ontology is made visible in a WCSS.

It seems obvious that work support offered by an
interface client is more readily understood and useful
if it is expressed in terms the user currently uses to
think about issues and problems and to produce work
artifacts. It follows logically that a consistent, work-
centered taxonomy with associated meaning (i.e. an
ontology) will facilitate use of the support system.
The user does not have to learn new, tool-centered
terms, and he or she will not need to change
referential or inferential focus during the course of
working a problem and using the tool(s). But the
significance of this design principle grows in
importance when the WCSS is an interface client to a
large, heterogeneous enterprise system. As we have
indicated, typically each database and available
software application will have its own unique
vocabulary, syntax, and semantics, hence its own
ontology, in an enterprise network system. A work-
centered term expressed in the WCSS, therefore, may
have different meanings in each of these different
ontologies. This fact, plus the sheer magnitude of
languages covered in databases that may need to be
learned, can detract from user performance and
complicate the use of a WCSS if a single, work-
centered ontology is not employed and semantically
mapped to information sources.

Another dimension to the problem is the issue of
automation surprise. Because databases and
applications internal to the enterprise system may
employ machine intelligence in some form, there is
ample opportunity for the automation to perform in
ways that are not clear to the user. The resulting
behavior diverts attention from the work to the tool,
creates surprise, confusion, and may cause error in
performance.

We have addressed these issues in the design of a
WCSS by developing a work-centered ontology that
is expressed in the interface representations and by
exploiting a three-dimensional model of software
agent interaction to attack the problems of semantic
mapping (e.g. from databases to the interface client)
and automation surprise. The three-dimensional
model provides concepts for 1) how to arrange levels
of agent autonomy for interface agents near the
surface of the WCSS to those distributed within the
infosphere, 2) how to address differential unity of
software agents, and 3) how to provide a consistent
work-centered ontology to coordinate user-agent

interaction. A more comprehensive discussion of a
WCSS from a software agent perspective is provided
in Young, Eggleston, and Whitaker (2000).

3.2 Work domain representation. The second
design principle for a WCSS deals with the
representation of the work domain. The focus of this
form of representation is on the ÒfieldÓ where work
takes place. It is a structural presentation of the
interacting variables that influence the production of
work products. These variables are spatially arrayed
in a manner that supports visualization of a work
state (see footnote) from a variety of perspectives.
Variables may include abstract concepts as well as
physical ones. The abstraction-decomposition work
analysis method used by Rasmussen, Vicente, and
others is an attempt to capture relevant variables that
are used to define a work domain (cf., Eggleston,
1998; Rasmussen, 1986, 1994; and Vicente, 1999).

By presenting a visualization of the work domain, a
user is able to use perceptual pattern detection and
recognition to stimulate cognitive awareness of
possible solutions that are sensitive to the constraints
contained in the work field. It is in this way that a
work domain representation serves to indirectly aid
the user in solving difficult problems.

It is useful to note that whereas a work ontology is an
organizing device that operates at the conceptual or
knowledge level, the work domain state space
operates at a perceptual level. By making visible the
variables of the work field and not just the ones
directly related to a specific issue, the user is able to
see both a properly bounded solution space, and the
available degrees of freedom to resolve the problem.
This contrasts with an interface design approach that
concentrates solely on the work product to be
completed. When a product model is the only
expression made visible in the interface, the product
artifact is effectively lifted out of the analysis and
decision making context.

3.3 Decompose work using the Focus Method. The
final design principle addresses the issue of
segmenting work into smaller units as a means of
aiding the user to help cope with task complexity.
The typical strategy is to decompose work into a set
of functions that, if necessary, are further
decomposed to subfunctions. The user interface is
then often designed to support each function,
essentially on a function by function basis. Several
functional clusters may be presented on the same
display surface, or they may be on separate surfaces.
This approach may work fine when interactions
among tasks are nonexistent or quite low. But when

many factors interact, individual task decisions
generally cross functional boundaries, and the user
must handle this added complexity without any
support from the user interface system. As a result,
work performance suffers. The question, then, is:
How can we gain the benefit of decomposing work
into smaller units in a manner that better enables the
solution of problems defined by multiple
interactions?

WCSS technology is predicated on the use of a
different type of work decomposition to better handle
this problem. We call our technique the Focus
Method. The basic principle incorporated in this
method is to ÒdecomposeÓ work into work domain
focus areas. A focus area is similar to a functional
cluster, but it is different in that 1) the work domain
as opposed to a function or task is expressed, and 2)
the entire domain is included in the expression, not
just a subset. The Focus Method may be thought of
as moving the center of attention to a region of the
work domain that lies at the heart of interest for
certain problems or issues that must be resolved as
part of the work process. Phrased another way, the
goal is to highlight portions of the work domain as a
whole instead of presenting it piecemeal. It is an
emphasis area. In keeping with the second design
principle, a more detailed visualization is used to
present the focus area. The remainder of the work
domain is expressed in the periphery of the WCSS
display at a lower level of resolution. More
resolution can be readily achieved when needed in
this region of the work domain through the use of
direct-access drill down and reach back to reveal
more enriched forms of information and work tools.

It should be clear this approach to work
decomposition is quite different from segmentation
by function. With the deployment of the Focus
Method a WCSS is able to enjoy the benefits of
breaking work into smaller chunks without
sacrificing direct engagement with the full relevant
set of interacting variables contained in the work
domain. The complexity of work is reduced without
inadvertently and inappropriately reducing the
problem complexity.

The distinction between these two approaches of
work decomposition can also be seen conceptually
with the use of a simple schematic (see Figure 1). A
functional decomposition follows a whole-part
strategy to parse work into a set of functions or tasks.
It results in an inverted tree structure, with each node
being a function. When many factors interact in
work, the worker must traverse multiple branches of
the tree to bring together all the relevant pieces,

which can place a heavy burden on cognitive
capacity.

In contrast, the Focus Method operates on the work
domain and uses an attentional strategy to achieve
work decomposition. Attention is centered on a local
aspect or region of the work domain. It is
represented schematically in two ways (see Figure 1
b and c). A ÒcompiledÓ form (Figure 1b) shows the
focus areas (small circles) in a work domain
represented as a circle in the plane. To better
visualize the centering of attention, we can expand
the work domain model to form a cylinder where
slices through it represent the work domain from the
unique perspective of a focus area that has been
ÒcenteredÓ in terms of detail provided in the display
visualization (see Figure 1c).

A work-centered ontology, work domain
representation expressed as a state space, and the
concept of focus areas constitute a nested set of
methods that help to make work manageable and
reduce cognitive complexity through organizational
means. The power of using a comprehensive
organizational strategy in the design of an interface
client is often overlooked. To make these
characteristics of a WCSS more concrete, we
illustrate a WCSS as an interface client to an airlift
planning and command and control enterprise
environment. Selected portions of the WCSS are
briefly presented and discussed in term of the three
design principles.

4.0 A WCSS Prototype for Airlift Planning

A WCSS prototype has been developed to support
military airlift planners responsible for authorized
recurring missions. For this class of planner, known
as Channel Planners, the basic unit of planning work
is known as a route set. A route set is defined by a
set of missions that complete a circuit. It includes all

aerial port stops to on-load and off-load cargo,
passengers, or both, including the aircraftÕs point of
origin. To plan or replan a route set or part of a route
set (e.g. mission leg), the planner must consider many
different factors. These range from issues about the
cargo, available aircraft, aircrew, permissions and
clearances, funding, etc. Channel routs sets are
formulated up to several months prior to execution.
As a result, many events can happen during this time
period that make it necessary to modify the route set.
For example, a restriction can be placed on an airfield
that conflicts with the planned date/time of the
mission. During any duty day, the Channel planner
must both plan new missions and detect events
requiring replanning, such as a field closure.

For the purpose of illustration, we will consider a
particular replanning problem that emerges when the
number of aircraft that converge on an aerial port
within a given time window exceeds that portÕs
parking capacity. This is known as a Maximum on
Ground (MOG) problem. We will look at the MOG
problem in terms of work for a Channel Planner.

Figures 2, 3, 4, and 5 show selected panes from the
WCSS. The full system includes additional
interactive analysis tools, but these panes will suffice
to make concrete important features of the WCSS
technology. A complementary discussion of this
interface client system is presented in Young et al.
(2000).

A work-centered ontology serves as an organizing
framework for the entire WCSS. This ontology can
be seen in all of the analysis tools by the terms that
are used. Each term is used in the work vocabulary
of actual Channel Planners. To see the result of
employing this and the other design principles, we
will trace how a user may exploit the WCSS client
for a Òpop upÓ MOG event.

Let an airlift mission be posted to the enterprise
system by another planner responsible for a different
category of mission type. The WCSS MOG-alert
agent (direct aid) detects that this newly posted
mission induces a MOG problem at a specific aerial
port for a route set (mission) that has been planned
previously by our WCSS user. The alert is issued to
the WCSS and expressed in the form of an icon on
the Windows Task Bar. The planner may hover
his/her mouse over the alert icon to learn the port
involved and may click the icon to see the source of
the problem. A mouse click opens the Conflict
Summary Tool that shows the missions that result in
a MOG problem at base x.

The Conflict Summary Tool (see Figure 2) is a
context sensitive support aid that presents the
problem to the mission planners involved in the
conflict. The tool provides a limited but efficient and
context sensitive way to support decision making and
collaboration to resolve the problem. Without the
tool, the problem is simply inherited by the planner
with the lowest priority mission. With the WCSS
tool, the planner whose action induced the impending
problem finds out about the MOG condition in the
context of his current planning activity. As a result,
when the alert is detected, this planner has a current
mental model of his planned mission and will often
know where the plan can be modified without
disturbing the route set. Because the information
about this mission is fresh when the conflict is
broadcast to him or her, little effort may be required
to solve the potential problem and thereby eliminate
conflict with other planners, who would have to
become acclimated to the context before problem
resolution could begin. The planner whose mission
ÒcausedÓ the problem can signal his or her intention
by clicking the ÔrecutÕ box in the Conflict Summary
Tool. Hence the WCSS in this situation provides a
form of collaboration and decision support. More
extensive forms of collaboration are provided by
items in the periphery of the tool, and other
information is also readily available to further aid
decision making. All of these features are subtle, as
they blend into the work state representation.

Assume that the lowest priority planner must resolve
the MOG problem. In this situation, the planner will
have to bring into focus the route set involved. (It is
not likely he or she would be working on this route
set at the time.) From the Conflict Summary Tool,
this planner could focus on his/her missionÕs role in
the conflict by selecting (via mouse click) the Port
Analysis Tool (see Figure 3).

The aerial port focus (i.e. work Decomposition by
Centering) is made clear by the visualization in the
center of the tool. Horizontal bars of different
thickness (to reflect narrow and wide bodies) portray
ground-time profiles for aircraft at the port. The red
highlighting, denoting the time period for which the
number of aircraft exceeds parking spaces, represents
the projected MOG condition. Given this
visualization, the planner may see a simple solution.
If not, data on other factors relevant to resolution can
be readily invoked through the Port Analysis ToolÕs
peripheral buttons. These permit rapid drilldown to
information on permission request requirements in
effect at this port, diplomatic clearance request status,
and detailed information about the aircraft and crew.
Such information allows the planner to visualize what
adjustment is feasible and where degrees of freedom
are restricted. Course of action feasibility can be
interactively tested, because additional alerts are
generated if a selected alternative induces either
upstream or downstream problems in the route set.
To address the entire route set, the planner needs to
center on a larger portion of the work space. He or
she can do this by invoking the multi-port display
(see Figure 4).

The Multi-Port Tool replicates the Port Analysis Tool
for all ports involved in a route set, or a subset if
selected by the planner. In this way interactions
across ports can be easily visualized. As adjustments
are made in the plan, a conflict alert agent provides
direct aiding. Note that the Òwhat ifÓ analysis is
carried out in the work-centered taxonomy, as was
true for all other analyses and information collection
activities.

Now assume that while the planner was working this
MOG problem, new alerts were issued to point out
the possible need to replan other missions. The
planner may briefly suspend work on the MOG
problem to review these alerts and decide to leave
them pending until the MOG problem is resolved. At
this point, he calls up the Alert Summary pane that
provides a queue of pending replanning problems
(see Figure 5).

One feature of this tool is it allows the user to
customize his ÒTo DoÓ list. Some of the items may
need immediate attention and others may not. Based
on experience, the planner may anticipate some of the
items will be overcome by events, making it
advisable to defer working them. The Planner may
set alarm schedules to indicate under what conditions
and when and how often to be prompted about a
particular mission that may need replanning. The
Alert Summary tool, therefore, aids self-organizing
meta work, in addition to providing direct
information about pending replanning work. Self-
organizing work represents another focus or center of
the work domain for the Channel Planner.

This brief walk through of a WCSS can only provide
a flavor of the features and principles used in the
development of WCSS technology. With the
exception of the Multi-Port Tool, all of the tools have
been implemented in the prototype system. The
prototype has been demonstrated in a simulated
enterprise environment that included agent-agent
brokering and access to legacy databases. However,
interaction between planners, and the software
interface to legacy planing applications, remains to
be implemented. Accordingly, aspects of the WCSS
client that depend on the use of these assets have not
been developed.

5.0 Summary and Conclusions

The interface client to an enterprise system needs to
be regarded as a support system. For complex work,
the type and form of aiding needs to be adaptable and
flexible enough to meet emerging circumstances.
WCSS technology explicitly considers the user
interface as an integrated support system. It uses
design principles and methods that are able to
provide flexible and adaptive support in a manner
that allows the user to stay focused on work, rather
than having to periodically shift focus onto the tool
itself. Thus, the complexity of work experienced by
the user is reduced. The three principles of direct and
indirect aiding, work domain representations using
work ontology, and work division by the Focus
Method all play together to make a well-formed,
user-centered interface client.

6.0 References

Eggleston, R.G. , 1998. Cognitive engineering: The
latest fad or a true step forward as an approach to
complex multi-person system analysis and design?
In NATO Research and Technology Organization
Meeting Proceedings 4, Collaborative Crew

Performance in Complex Operational Systems, RTO-
MP-4, December, 1998.

Rasmussen, J., 1986. Information processing and
human-machine interaction: An approach to
cognitive engineering. New York: North-Holland.

Rasmussen, J., Pejtersen, A.M., and Goodstien, L.P.,
(1994). Cognitive systems engineering. New York:
John Wiley & Sons.

SAB, 1999. Building the Joint Battlespace
Infosphere, Vol 1: Summary. United States Air
Force Scientific Advisory Board Report, SAB-TR-
99-02, December, 1999.

Sarter, N.B. and Woods, D.D., 1997. Team play with
a powerful and independent agent: Operational
experiences and automation surprise on the Airbus A-
320. Human Factors, 39(4), 553-569.

Vicente, K.J., 1999. Cognitive work analysis:
Toward safe, productive, and healthy computer-
based work. New Jersey: Lawrence Erlbaum
Associates.

Young, M.J., Eggleston, R.G., and Whitaker, R.D.,
2000. Direct manipulation interface techniques for
interaction with software agents. Paper presented at
the NATO/RTO symposium on Usability of
Information in Battle Management Operations, Oslo,
Norway, April 2000.

Footnote. As used here, a domain state space
presents a spatial layout of a work domain model that
is expected to be necessary and sufficient to fully
represent the field of practice. While related to a
mathematical state space representation, a domain
state space visualization is different. It does not
include variables as coordinates to frame the space in
the interface expression. Coordinates are used in the
underlying analytical model.

