
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841  Fax: (724) 776-5760

SAE TECHNICAL
PAPER SERIES 1999-01-1893

A Specification for Human Action Representation

John D. Ianni
Air Force Research Laboratory

Digital Human Modeling for Design and Engineering
International Conference and Exposition

The Hague, The Netherlands
May 18-20, 1999



SAE routinely stocks printed papers for a period of three years following date of publication. Direct your
orders to SAE Customer Sales and Satisfaction Department.

Quantity reprint rates can be obtained from the Customer Sales and Satisfaction Department.

To request permission to reprint a technical paper or permission to use copyrighted SAE publications in
other works, contact the SAE Publications Group.

ISSN 0148-7191

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely
responsible for the content of the paper. A process is available by which discussions will be printed with the paper if it is published in
SAE Transactions. For permission to publish this paper in full or in part, contact the SAE Publications Group.

Persons wishing to submit papers to be considered for presentation or publication through SAE should send the manuscript or a 300
word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE.

Printed in USA

All SAE papers, standards, and selected
books are abstracted and indexed in the
Global Mobility Database



1

 1999-01-1893

A Specification for Human Action Representation

John D. Ianni
Air Force Research Laboratory

ABSTRACT

This paper will propose a specification that will allow any
Human Figure Model (HFM) to be controlled by external
sources such as Human Performance Process Models
(HPPMs).  The specification includes an enumerated set
of actions – each with a set of parameters that describe
how the action is performed.  Return codes and queries
are also supported to update the calling program on the
status of the action.  The specification will be proposed
as a Society of Automotive Engineers (SAE) standard.

INTRODUCTION

If someone talks about simulating a human, what comes
to mind?  Is it a highly accurate representation of the
physical human?  Or do you think of simulating cognitive
activity?  Perhaps you think of both.  Until recently, it was
inconceivable to simulate realistic human activity
because of the computational requirements.  We need to
prepare ourselves for simulations that far exceed many of
our expectations.  Computer hardware and software are
advancing so fast that we need to ensure that a system-
atic approach is maintained. 

In order to prepare ourselves for advancements in human
simulation, we need to speak a common language.  Sev-
eral terms are used to describe simulations of humans
but each has its own meaning. For example, a human fig-
ure model (HFM) or mannequin is a model of the physical
human.  Loosely speaking, an avatar is an HFM con-
trolled with virtual reality equipment.

But simulations of humans should not be limited to physi-
cal tasks.  Simulating a human’s task performance some-
times must account for cognitive processes as well.
Human Performance Process Models (HPPMs) are mod-
els of the cognitive human.  Therefore for this paper we
can depict these relationships as follows:

Mannequin = HFM

Avatar = HFM controlled with virtual reality
equipment (loosely speaking)

HPPM = cognitive model (sometimes referred to
as agents)

Given the maturity of HFM and HPPM software, we
should soon see simulations that are highly accurate

depictions of both the physical and cognitive human.  For
this type of simulation, the term virtual human (VH)
seems most appropriate.  Thus we can think of this rela-
tionship as: 

VH = HFM + HPPM

HFMs are used for various engineering and training
applications.  They can simulate actions of a driver, pilot,
maintainer, manufacturer or other roles performed by
humans.  These models are comprised of numerous soft-
ware functions and data to accurately represent anthro-
pometry, biomechanics and other ergonomic factors. 

HPPMs come in many varieties.  Some allow a user to
construct a task network in which various situations can
be simulated.  Although there may be advanced logic
underlying these networks, they actually do not simulate
how people think.  Other software can make decisions
based on beliefs, experiences, and heuristics formulated
over its “life.”  Some of these can even simulate human
factors like fatigue, anger, and mental overload.

Many applications can benefit greatly through a marriage
of mind and body models.  One of the simplest benefits is
adding a realistic looking human to HPPMs.  Some
HPPM software offers a stick figure that represents
humans, while others represent humans with unarticu-
lated icons.

Human figure models will benefit from a standard action
represention as well.  By linking with HPPMs, HFMs
should become easier to use for task analysis because
they will be able to perform tasks autonomously.  In addi-
tion, a standard user interface can be created using the
standard interface.

Beyond simulation, a standard representation of tasks
can be used to control any articulated figure such as a
robot.  After all, HFMs can be considered simulations of
robots with mechanics similar to a humans.

PREVIOUS WORK

The Air Force Research Laboratory, Sustainment Logis-
tics Branch (AFRL/HESS) has conducted research in
maintenance simulation on the DEPTH (Design Evalua-
tion for Personnel, Training and Human Factors) program.
Early in the program, an interface was created between
the University of Pennsylvania  (Penn) Jack model and



2

the Human Operator Simulator (HOS).  HOS was an
HPPM developed by MicroAnalysis and Design, Inc. for
the Army Research Laboratory.

Although some success was achieved, several imple-
mentation shortfalls were noted.  Probably the most dam-
aging was the lack of robustness in the socket interface.
The system frequently segment faulted during a simula-
tion.  Second, HOS was used to control every minute
movement rather than controlling at the task level.   In
addition to excessive message traffic, the clarity of task
networks was diminished.

The DEPTH program then developed a set of reusable,
parameterized task primitives (called motion models)
using Jack’s built-in functionality that could be used to
create more complex tasks.  This demonstrated how
tasks could be constructed in a logical hierarchy.  The
goal was to allow compound motion models to be reused
as primitives for even more complex simulations.  Dialog
boxes were created for the pre-defined motion models
that provided a friendly method to enter customization
parameters.  This functionality was useful but still had
shortcomings.  One shortcoming was that tasks could
only be assembled sequentially – parallel tasks were not
supported.

Although this demonstrated how the creation of tasks
could be greatly simplified, complex simulations were still
not simple to create.  So AFRL investigated how an
HPPM could be used to automate HFMs.  BBN, Inc. and
Penn were contracted to create an interface between
Jack and the Operator Model Architecture (OMAR).
Some success was achieved, but the interface was spe-
cific to OMAR and Jack.

Penn has also developed a specification for an action
application programmer’s interface (API).  The API, titled
Parameterized Action Representations (PARs), was
developed under Air Force contracts to generate techni-
cal manuals automatically.  

PARs provide a structure for action representation but the
actual list of actions were not defined.  The parameters
for each specific action was obviously not defined either.
Thus I reviewed various task analysis methods and spec-
ifications of HFMs and HPPMs to develop a streamlined
list of actions, inputs and outputs.

Standard methods to control human motion are surfacing
in groups such as the Motion Pictures Engineer’s Guild
(MPEG).  MPEG-4 contains a standard for HFM anthro-
pometry and joint motion control.  Controlling human
activity by specifying changes in joint angles is probably
the most flexible method to control an avatar.  However, a
task-based approach offers several advantages:

1. Bandwidth.  A seemingly simple transition from sitting
to standing requires numerous joint transitions.  Thus
significantly fewer task-oriented instructions are
required than joint-oriented instructions.  This lower
bandwidth can be critical if segments of the virtual

human are distributed over the World Wide Web or
other wide area network.

2. Task analysis. If the HFM knows the task it is per-
forming, analyses can be performed that otherwise
may not be possible.  For example, in lifting an object,
a lift strength algorithm can be invoked to determine
if the object was too heavy to lift to the designated
height.

3. More intuitive.  In performing a task, humans usually
don’t think about how their joint angles need to
change.  They are better able to think in terms of
tasks and subtasks.  A task-level interface should
promote more intuitive creation of HFM simulations.

THE SPECIFICATION

In coming up with this proposal, I examined various meth-
ods of task description including Methods-Time Measure-
ment (MTM). I found that certain actions had
considerable overlap because they were essentially
accomplishing the same task.  For example, carrying, lift-
ing, pushing and pulling are methods used to move an
object.  They all can be accomplished with either or both
hands and terminate once the object reaches a different
location.  With this in mind, I found that seven basic
actions listed in Table 1 were sufficient to describe most
work-oriented tasks.  They allow for an HFM to move
itself (Position), touch an object (Touch), get an object
(Get), move an object to another location (Put), look
somewhere (LookAt), use an object to act on another
object (UseTool), or operate a machine (Operate).

The actions are intentionally broad, allowing them to be
as flexible as possible without losing the action’s identity.
All input parameters are optional, allowing the invocation
to be as simple as possible.  If insufficient information is
passed, the appropriate failure code (Table 2) is returned.

The inputs listed in Table 1 are unique to that action.  In
addition to the inputs listed, most actions share the fol-
lowing input parameters:

• Agent – Who will perform the action?

• Object – What object or point will be acted upon?

• Duration – How long should it take?  This consists of
two positive numbers, namely min and max.  This
allows a range (if min<max) or a specific time (if
min=max) to be specified in milliseconds.  Either or
both numbers may be omitted to make the time seg-
ment open ended.

• Conditions – What states are required before (pre)
and after (post) the action takes place?  Known as
“applicability conditions” in PAR description.

In addition to passing information to describe the action,
it is important to inform the caller what happened.  For
example, was the action successfully completed?  If so,
how long did it take?  Of not, what went wrong?  Thus two
variables are returned for each action invocation:



3

• Failure code – These codes are enumerated in Table
2.  Despite the title, it is also used to inform of suc-
cess and provide warnings.  Failures can result in
erroneous or insufficient information being passed, or
in the simulated action.

• Duration – How long did the action take (in real, not
simulation time)?  If the simulated action fails, how
much time was spent before the failure occurred?

The actions in Table 1 can be the basis for more complex
actions.  As an example, consider the removal and
replacement of a heavy rack-mounted component.  The
steps involved as described in natural language are:

1. Remove 6 cables at the rear of the unit.

2. Raise the table platform to the front of the unit so the
unit can slide onto it.

3. Remove the 4 rack fasteners.

4. Pull the unit out of the rack.

In the above example, many of the details of the task are
omitted.  Notice that there is no guidance for the human
to move anywhere because the location and require-
ments of each subtask dictate the location and posture of
the human.  But since most human models cannot make
such interpretations on their own, we will specify the first
position change in the code below.  The human name
and duration information are also omitted in all except the
first statement.  Comments are italicized.

The following instruction instructs  the human model to
walk to and face the first connector (back of unit).
The human is to remain standing at the completion of this
task in a position to grasp the connector.

Notes:

• human1 must be predefined or omitted if no others

• connector1 must be predefined

• The action must take between 10 and 20 seconds in
estimated duration or be considered a failed step.

• The posture of the agent at completion of this step

• The agent will walk as opposed to run, crawl, etc.

• The agent’s torso will face the connector

Reach for and grasp the first cable’s connector.

Since purpose=disconnect it is actually unnecessary to
indicated grasp_type=precision.

If the HFM software is sophisticated enough, it should
actually be unnecessary to perform this “Get” command

since it can be presumed given it’s followed by a “Use-
Tool” command.

Also notice human1 is omitted since there are no other
humans in the environment.

Now disconnect the cable.  This is handled with the Use-
Tool command but the tool is the right hand.

Since a single connector is only disconnected once, rep-
etitions is assumed to be 1.

The calling program could have also defined a function
“Disconnect (connector1, right)”

Note: connector1.center is a predefined site.

Note: right_target is a predefined point out of the removal
path

** The above commands are repeated for the remaining 3
connectors.

Now unscrew the first fastening bolt.

Notice the Position and Get functions were omitted since
the HFM can presume these actions.

The calling program could have also defined a function
“Screw (fastener1, unscrew, right)”

Since a single connector is disconnected only once, rep-
etitions is assumed to be 1.

Hand tools should have predefined grasp types.

** The above command is repeated for the remaining 3
fasteners.

Pull out the rack unit using the two handles.

Position ( agent=human1,
object=connector1,
minimum_duration=1000,
maximum_duration=2000,
posture=stand,
movement_type=walk,
orientation=facing,
purpose=grasp  )

Get     ( object=connector1,
purpose=disconnect,
grasp.hand=right,
grasp.type=precision  )

UseTool ( object=connector1,
tool=hand,
action=disconnect,
grasp.hand=right,
grasp.type=precision )

Put     ( object=connector1,
action=carry,
base=connector1.center,
target=right_target )

UseTool ( object=fastener1,
tool=screwdriver,
action=unscrew,
grasp.hand=right )

Put ( object=rackunit,
action=pull,
grasp.hand=both,
target=rackunit.handles )



4

Table 1. Proposed Actions and Parameters

Action
Action-Specific 

Inputs Comments

Position posture, 
movement_type, 
orientation, purpose,
base

This is intended to move and/or re-posture the agent.
posture values include stand, sit (straight/slumped), squat, kneel (one/two 
knees), lay (prone/supine/side), crawl, and bend.
orientation can be specified to change the direction that the human model faces.
movement_type describes whether the agent will walk, run, crawl, roll, scoot, or 
ride.
object specifies the goal location which depends on purpose which indicates 
what the agent plans to do with the object.
base is a point that is to align with (snap to) the object.

Touch end_effector This directs an agent to touch the object with the end-effector.  Any point on the 
body can be used as the end-effector, even elbow, knee or forehead.

Get purpose, grasp_data This directs an agent to reach for and grasp an object.  The purpose parameter 
will inform the agent what will be done with the object after it is grasped – 
moved, turned, carried, etc. grasp_data is specified in Figure 1.

Put action, grasp_data, 
base, target

The object is used to specify what is transported and partially how it is trans-
ported.
action codes are listed in Table 4.
grasp_data is specified in Figure 1.
base is a point on the agent or object that is used to align with the target.  If 
base is a point on the agent, then the object will continue to be held at comple-
tion (i.e., carry and hold)
target specifies the surface or point where the base is to be aligned. 

LookAt max_vis_field, focus object specifies where the agent will look.
 focus is “yes” if a specific location must be focused on.

UseTool tool, action, hand, rep-
etitions 

tool is comprised of the category code and specs.  The categories are 
described in Table 5.  The specs (not yet defined) will define the tool size, acces-
sories, etc.
action can be remove, replace, loosen, tighten, connect, disconnect, or hammer.
object specifies where the tool is to be applied, such as a bolt, screw or point on 
a surface.
hand indicates the hand(s) used with the tool (right, left, both, right with left used 
to guide, left with right guide)
repetitions indicates how many times the action will be repeated.

Operate action, unit1, unit2 This instructs the agent to use a machine’s controls (specified by object) includ-
ing steering wheels, break pedals, switches, keyboards, mice, and other devices 
(Table 3).  unit1 and unit2 (also described in Tablke 3) describe the resulting dis-
placement of the control.  unit2 is only used in cases where a two-dimensional 
action takes place.



5

Table 2. Failure Codes

Failure 
Code Description

Success states

0 Not a failure; action was successfully completed with no problems identified

1 Not a failure; action completed but unspecified problem occurred

2 Not a failure; action completed but possibly unsafe

3 Not a failure; action completed but human fatigued

4 Not a failure; action completed but possible strain may result

5 …

Warning & Danger Messages

128 Undefined warning state (other than those listed below)

129 Multiple warnings occurred (need to query for more clarification)

130 Task is unsafe

131 Object is too hot

132 Object is too cold

133 Noise level too high

134 Too close to sharp object

135 Radiation

136 …

Programming errors

256 Undefined program error (other than those listed below)

257 Multiple program errors occurred (need to query for more clarification)

258 Feature not supported by this software package

259 Tool not available

260 Insufficient information: other data needed

261 Insufficient information: agent not specified

262 Insufficient information: target not specified

263 …

Task failures

384 Undefined task failure (other than those listed below)

385 Maximum duration exceeded

386 Required position could not be achieved

387 Multiple task failures occurred (need to query for more clarification)

388 Strength exceeded

389 Insufficient accessibility

390 Human cannot get into position to complete task

391 Target visually obscured

392 Target out of visual range

393 Insufficient lighting

394 Human fatigued

395 …



6

Table 3. Operate Action Codes

Code Units Description

Toggling devices

0 off=0, on=1 Move toggle switch

1 mm Press button (units signify the amount the button is depressed)

Sliding/shifting devices

8 -1 = reverse
0 = neutral
1-7 = actual gears
8 = auto transmission drive
9-11 = low gears 1-3

Shift gear - either on steering wheel or floor (HFM system must 
have gear settings pre-defined).

9 unit1 = proximal-distal in mm
unit2 = left-right in mm
(proximal/left are negative)

Move free floating gear shift

10 Mm
(proximal/left are negative)

Move slider/fader

Rotating devices

32 Degrees Turn dial

33 Degrees Turn wheel - one hand

34 Degrees Turn wheel - two hands

Foot controls

48 Mm (depress positive) Pedal - linear (e.g., auto breaks and accelerators)

49 Degrees Pedal - swiveling (e.g., pivoting)

50 Revolutions Pedal - rotating (e.g., bike pedals)

Computer input devices

64 Number of characters Type random characters on computer keyboard

65 ASCII character Type character on computer keyboard

66 unit1 = proximal-distal in mm
unit2 = left-right in mm
(proximal/left are negative)

Use mouse

Table 4. Object Manipulation Action List

Grasp Attach hand(s) to object 
Release Detach hand(s) from object 
Push Extend arms to move object away 
Pull Retract arms to move object closer 
Press Push arms down to move object down 
Lift Pull arms upward to move object up 
Insert Place a component inside another 
Extract Remove a component from inside another 
Attach Connect objects
Detach Disconnect objects
Latch Movement to secure an object 
Unlatch Movement to unsecure an object 
Open Open an access panel 
Close Close an access panel 
Turn Physical manipulation of an object 
Hold Keep an object grasped in hand 
Carry Hold on to an object while walking 



7

Figure 1.   Grasp Description

Table 5. Hand Tool Codes

Code Tool Description Code Tool Description

0 Hand(s) - bare or gloved 13 Knife

1 Screwdriver 14 Wire cutter

2 Pliers 15 Breaker bar

3 Hammer 16

4 Fixed wrench 17

5 Torque wrench 18

6 Socket wrench 19 Soldering iron

7 Allen wrench 20 Gages/testers

8 Ratchet wrench 21 Nut runner

9 Other wrench 22 Hoist/jack

10 Drill 23 Cleaning tool

11 Powered screwdriver 24 Lighting unit

12 Other power tool 25 EVA tool

Grasp data

Arm Grasp

Hand Grasp

Left Hand

Two arm - bear hug
Two arm - fork lift
Left arm
Right arm

Right Hand

Grasp type Orientation

Type Body rest
Where on the torso
will the object rest?

Same as left hand

Power, precision,
handle, open handed,

etc.

How will the hand
and wrist be oriented?



8

CONCLUSIONS

Defining a specification that meets everyone’s needs may
be impossible.  However, I attempted to define a set of
actions and parameters that should address most engi-
neering applications.  The variable list of parameters
allows the caller to be ambiguous if desired, but the HFM
must be able to make reasonable judgments.

ACKNOWLEDGEMENTS

Thanks for comments on this proposal from Dr. Michael
Biferno and his team at Boeing, Sylvain Marie of Genicon
and Mr. John Quinn formerly of the University of Dayton
Research Institute.  Special thanks to Dr. Joseph
McDaniel for sharing his expertise through the years.

REFERENCES

1. Perlin, Ken; Goldberg, Thomas (1996). Improv: A
System for Scripting Interactive Actors in Virtual
Worlds, 1996 SIGGRAPH Proceedings

2. Boyle, E.  (1991).  “Human-Centered Technology:
Ends and Means,” Human Centered Technology for
Maintainability: Workshop Proceedings, AL-TP-1991-
0010, Brooks Air Force Base, TX: 38-39.

3. Douville, B. J. (1995).  PaT-Net User’s Guide.  Univer-
sity of Pennsylvania, Philadelphia, PA: 1-6.

4. Granieri, J.; Crabtree, J.; and Badler, N.  (1995).  Pro-
duction and Playback of Human Figure Motion for
3-D Virtual Environments. University of Pennsylva-
nia, Philadelphia, PA.

5. Ianni, J.  (1991).  “Crew Chief: Present and Future,”
Human Centered Technology for Maintainability:
Workshop Proceedings: 32-36.

6. Karger, Delmar W., (1977). Engineered Work Mea-
surement, Industrial Press.

7. Vujosevic, R. and Ianni, J. (1996).  “Maintenance
Motion Models,” CALS Expo International ‘96 Confer-
ence Proceedings.

CONTACT

John Ianni has been involved in human modeling and
simulation since 1985 when he started working on the
Crew Chief project.  He acted as program manager of the
DEPTH project that was completed in 1997.  You can
reach John at:

AFRL/HESS
2698 G Street
Wright-Patterson AFB, OH 45433-7604

Phone: (937)255-1612   Fax: (937)255-6555
E-mail: john.ianni@he.wpafb.af.mil


