
Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

1

A DEVELOPMENT ENVIRONMENT AND METHODOLOGY FOR THE DESIGN
OF WORK-CENTERED USER INTERFACE SYSTEMS

Wayne Zachary

CHI Systems, Inc
Lower Gwynedd, PA

Robert G. Eggleston

Human Effectiveness Directorate
Air Force Research Laboratory

ABSTRACT

Work Centered Support System design represents an approach to the development of user interface
application as an integrated, multi-faceted active and passive aiding system. Several successful instances
of WCSSs have been developed using largely labor intensive hand analysis and software coding methods.
Here we describe a well-formed analysis, design, and implementation development environment, called
the WIL Application Toolkit (WAT), as a work-centered development support aid for one type of WCSSs.
The design principles and architectural properties of the WAT are discussed in the context of a design
methodology. These aiding tools for interface system development is expected to improve WCSS design,
shorten develop time, and improve sustainability of released interface products.

JBernard
ASC: 02-1586

Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

2

Introduction: Work Centered Support Systems

Traditionally, the user interface to machines and systems has been designed from the
perspective of accessing machine/system functionality (rather than supporting human work).
Human Factors professionals have repeatedly advocated a more user-centered approach to
interface design, e.g., the use-centered approach of Flach & Dominguez (1995) or the work-
centred philosophy of Rasmussen & Vicente (1990), Vicente & Rasmussen, (1992). In
distinction to tool-centered design, which tends to define features of the interface in terms of tool
properties, a work-centered approach seeks to define and organize the interface in terms of work
factors. Work-centered design leads information representations and interface features that more
directly relate to, and better support, the work the user is trying to perform, and ultimately enable
intelligent, flexible, and adaptable work behavior. Such a philosophy seeks to represent
properties of the work domain (as opposed to just task steps) as a way of opening the interface
for the user to constructively deployment flexible and adaptive strategies to meet the inevitable
uncertainties and disturbances that occur as work unfolds.

With this work-centered view of interface design, it is possible to treat the user interface as
not just a (passive) window into the underlying system functionality but rather as a multi-faceted
support system that is designed to aid the user in work performance (Zachary, 1985; Young et
al., 2000). The Work-Centered Support System (WCSS) paradigm developed by Eggleston and
colleagues (Eggleston et al., 2000) is an example design approach that integrates all a range of
direct and indirect forms of work support (e.g. decision aiding, collaborative aiding, product
development aiding, and work management aiding) within a common framework. It exploits a
unified set of direct, indirect, passive, and active aiding methods, to provide context sensitive
support for efficient, flexible and adaptive work performance.

Work-centered approaches, and more specifically the WCSS approach have resulted in more
effective user interfaces, there is a critical need for methods and tools to make work-centered
interface design and development more cost-effective and replicable. Initial progress toward this
goal is reported in this paper.

Thesis: Creating General Design Methods from A Common Reference Model

The approach taken to creating design methods and design/development tools for WCSSs
was to work from an explicit reference model, consisting of a well-defined space of functionality
and a well-defined underling reference architecture. The explicit functional space bounds and
defines the specific types of work-support that the WCSS can provide to its end-user. The
reference architecture defines the ways in which these support functions can be implemented,
using a common computational infrastructure supplemented by specific types of work-domain
knowledge . A highly general reference model of this type was abstracted from a series of related
WCSS applications that used a common architecture and design approach. Called the Work-
centered Infomediary Layer or WIL, it defined a broad but well-bounded space of WCSS
capabilities. A general WIL design method was created by abstracting and structuring the
underlying WIL design approach. The WIL reference model and design methods are reported
here. A key premise is that the WIL reference model and design method are sufficiently well-
defined that they can be turned into tools to support the design and development of future WIL-
type WCSSs.

Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

3

WIL Reference Model

WIL represents a class of work-centered support systems that incorporates instances of some
or all of the work-support functions described in Table 1, using the generic computational
architecture pictured in Figure 1. The central feature of the WIL concept is an explicit
representation of context, which includes the overall dynamic work context, the underlying
infosphere context, and even the WIL’s own internal context (i.e., awareness of what it is doing,
trying to do, has already done, etc.). Context is critical because work actions, decision-making,
and information needs are strongly based on an internal representation of the current work
context. This suggests that the work needs and goals of the user of WIL (or any interface) are
frequently understandable only within the local work context in which they arise.

Will uses the principle of a shared relationship among the user, application resources, and
task environment as the basis for establishing an understanding (by deploying reasoning
mechanisms) of the work domain as a current work context. The context is then used to
construct various forms of work-centered support, customized to the current situation.

From a processing perspective, the WIL reference architecture is divided into three layers. In
the front-plane layer, the human user interacts through a series of direct interaction objects (i.e.,
widgets), whose look and feel are tied both to the work domain and the interface functionality
they present.

Depending on the details of the specific work domain, the WIL application also needs to
interact with various algorithmic components, databases, data streams, etc. This allows the WIL
interface to avoid being the end-point to a ‘stovepipe’, connected to only a single sensor,
database, or system. Rather, the back-plane contains properties that allow a WIL interface to
interact with multiple components beyond its rear surface.

In between the front plane and back-plane of Figure 1 lies a set of processing capabilities that
support end-user work in different combinations of ways, depending on the situational needs of
the work domain addressed. It is this mid-plane layer that is the main locus of the work-centered
processing within WIL as a WCSS architecture. Within the mid-plane, a WIL interface
simultaneously and continuously performs three general tasks:

• understanding what work needs to be done (an understanding task);

• interpreting and determining how that work context relates to the user’s (often implicit)
work goals (the action/need assessment task); and

• determining how to support the human in achieving those needs and goals (the tailored
support task).

The WIL architecture enables these functions through three infrastructural processes which
automate understanding (by context representation), action/need (by context-driven
interpretation techniques), and tailored support (by providing objects in the front surface of the
interface that act as instances of general work functions as listed in Table 1.).

WIL Design Method
Work centered interfaces, by their nature, require a work-centered analysis and design

process. The prior WIL interfaces had made informal use of a design method which was
formalized and refined to the point that it could be at least partially automated. The WIL design
method is a structured process that breaks design into a series of well-defined steps, each of
which systematically move the designer/analyst from features of the work domain toward
specific system/interface features that will augment human performance in that domain. Each

Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

4

step is supported with specific data-capture protocols and abstracted guidelines, taxonomies
and/or rules that lead to the production of a well-defined output; this output is then used as an
input to the next step of the process. By the end of the process, a detailed design has been
produced. Importantly, the sequence of intermediate products also creates a traceable design
history that supports downstream maintenance and evolution of the system, as the rationale and
interrelations underlying the design are retained and are available for subsequent maintainer
teams. The overall WIL design method created is shown in Figure 2, (for a more detailed
discussion of each step, see Zachary et al, 2002).

Findings

The WIL reference model was used to create several WCSSs (Zachary et al, 2002). Despite
their successful work-centered design, all shared several pragmatic limitations, particularly
regarding the way in which they were constructed. They were all hand-coded, and required
extended interactions with work domain/subject-matter experts. They had development cycles
that, while reasonable in a research context, were unacceptably long and costly from a
commercial perspective.

A major goal of fully defining the WIL reference model and design method was to eliminate
these limitations by creating software tools to support and streamline the process of creating WIL
interfaces. These tools are termed the WIL Application Toolkit or WAT; in some sense, WAT
represents a Work-centered Support System for the creation of WIL applications. The
conceptual organization of WAT is summarized below.

 Overall, the WAT supports the WIL design process through three activities:
• providing data and knowledge about the work domain, i.e., subject matter expertise

(Steps 1 and 4 of Figure 2)
• making interface and software design/engineering decisions (Steps 2,3, and 5); and
• integrate and customizing the software code produced by the WAT (Steps 6 and 7).

This suggested three different types of WAT users. Subject matter experts (SMEs) provide
work domain knowledge. A user interface engineer makes the interface and software
engineering design decisions, a (pure) software engineer performs any needed code
customization. Pragmatically, while it is possible for the SME to enter data directly into the
WAT, it was deemed better for this entry to be mediated by the interface engineer.

The WIL design process also identified two different functions:
• analysis/design, which captures work domain information and functional design

information, and
• software specification and development, which translates the analysis/design

information into actual software.
These two functions are also differentiated by their immediate products or outputs.
Analysis/design functions all concern work-domain and functional design (i.e., non-executable)
content, while the products of the software specification and development functions all involve
executable (i.e., software) content. In addition, this grouping segregates the functions of WAT
which potentially need to be accessible to the subject-matter-expert type of user (the
analysis/design functions only), from those that need to be accessible to the interface engineer
type of user (the software specification and development functions).

The resulting organization and top-level design for WAT is shown in Figure 3, with two
component tools, an analysis/design tool (which captures its products in a design repository), and

Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

5

a software specification and development tool (which captures its products into a software
repository). This separation also created a potential problem, in that the two tools represent
intermixed steps in the design process. Thus, they could not be used in a strictly sequential
manner, but rather needed to be used in an interleaved manner to carry out the seven design
process steps in the proper order. Thus, the user(s) will log in, enter data and otherwise interact
with the tool, and log out, many times. As long as the two component tools are interrelated by
shared data repository access, the content in the repository itself (i.e., what has been entered so
far versus what has not) can be used to indicate to each of the tools whether it is possible to
proceed to later steps in the process. Future steps in this on-going research effort are focusing on
implementing the WAT and using it to develop a series of WIL applications in the Air Force.

Discussion

WCSSs that emerge from this design methodology represent a context-based approach to
user interface system design. A shared understanding of the context provides the foundation for
providing a wide set of tailored aiding as properties of the interface system. Because local
context, rather than task steps, is represented and reasoned about, the interface is poised to
support unexpected events and other emerging contingencies. Hence, WCSSs are expected to be
very robust in their ability to provide support.

The WAT development environment and methodology is crucial to our ability to meet
reduced time lines and product sustainment requirements. A cost-benefit analysis identified
several key benefits that WAT would bring to the WCSS development process to achieve this
goal:

• reduce needs for SME/operational personnel time in design engineering;

• reduce the effort required for work-domain knowledge acquisition and engineering;

• shorten the time spent in design, development, and debugging of the software needed to
implement the WIL application, because of the use of pre-validated high-level building
blocks (from the WIL reference architecture), and the resulting reduction in the number
of hand-coding components requiring more detailed validation and debugging.

Over the next several months, analysis and demonstrations of WAT components are planned.

References

Eggleston, R.G., Young, M.J., and Whitaker, R.D. (2000). Work-Centered Support System
Technology: A New Interface Client Technology for the Battlespace Infosphere.
Proceedings of NEACON 2000, Dayton Oh, 10-12 October, 2000 ,pp 499-506.

Flach, J. M. amd Dominquez, C. O. (1995). Use-centered design: Integrating the user,
instrument, and goal. Ergonomic and Design, pp, 19-24.

Rasmussen, J. and Vicente, K.J. (1990). Ecological interfaces: A technology imperative in high-
tech systems? International Journal of Human-Computer Interaction, 2, 93-110.

Vicente, K.J. and Rasmussen, J. (1992). Ecological interface design: Theoretical Foundations.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-22, 589-606.

Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

6

Young, M., Eggleston, R., & Whitaker, R. (2000). Direct Manipulation Interface Techniques for
Users Interacting with Software Agents. Proceedings NATO/TRO Symposium on
Usability of Information in Battle Management Operations. Oslo, Norway.

Zachary, W. (1985). Beyond user-friendly: Building decision-aid interfaces for expert end users.
Cybernetics and Society Conference Proceedings, Tucson, Arizona. IEEE: New
York. pp. 641-647

Zachary, W., Schremmer, S., and Donmoyer, J. (2002). Design Analysis for A Work-centered
Infomediary Layer Application Toolkit (WAT). Technical Report 011214.01011.
Springhouse, PA: CHI Systems, Inc.

FIGURES AND TABLES

Table 1 WIL’s General Work-Centered Support Functions
Function Description
Activity Management helping determine what work elements need to be done now, given the

current work context
Work Process
Structuring

helping determine how a given work element ought to be approached ,
given the current work context

Customized
Performance Assistance

performing, at the request or approval of the user, a given work task or
sub-element

Explanation/Elaboratio
n

providing explanations of system, sensor, infosphere events in terms
of their impact or effect on the user’s work and work needs

Work-Environment
Representation

constructing and displaying representations of the environment or
work domain structure and processes

Infosphere data
retrieval

actively collecting and making available pieces of information from
the external environment (i.e., into data streams, databases, etc.)

What if allowing the user to create hypothetical views in which possible future
work actions are defined and explored

Situation Awareness providing information at multiple levels of abstraction on the external
system or process with which the user’s work is involved

Work-flow
Prioritization

helping determine which of the work elements that need to be done
now have priority in the current work context (and why)

Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

7

Declarative
Domain Ontology

(How to think about
work domain)

Procedural/Dynamic
Domain Ontology

(How to think about
domain dynamics)

Work/Needs
Prediction Knowledge

(How to interpret/predict
what user will/does needs)

Dynamic
Context
Model

Domain
transactions/events

Context
significance

Context
significance

Infosphere
transactions/events

Context
significance

Infosphere search/
retrieval knowledge

Communication/network
management knowledge

Interaction Managen’t/
Broker

Infosphere
Information Source

Infosphere
Information Source

Support Generation

and tailoring

M
id

pl
an

e
Fr

on
t-

pl
an

e

B
ac

k
Pl

an
e-

Infosphere WidgetWIL Interface Widget

User Action/Needs
Prediction

User Transactions/events

Infosphere Transaction
Agent/process

Infosphere
Information Source

Worker/user

Decision/Performance
support knowledge

Underlying system
software and functionality

Figure 1. WIL Conceptual Architecture

1. Describe Work Domain

2. Determine WIL functions

3. Define WIL
Processing Architecture

4. Capture Work-domain
knowledge and data

5. Define & Rough-out GUI

6. Generate Prototype WIL

7. Customize (if/as needed)

Structured domain description
(SME-readable)

WIL functions
Needed work domain

Components needed from
WIL Reference Arch.

Work-domain data,
ontologies, etc. needed for
selected WIL components

GUI(WIL front plane) code

Full Work-centered Interface
(WIL front, middle, & backplane

Code) for current domain

Customized work-centered
interface code

Work-domain description
protocol

Taxonomy of potential
WIL functions and

Mapping rules

WIL reference
architecture

Knowledge acquisition
forms/schemes for each

Reference arch. component

Library of standard GUI
building-blocks for each

Reference arch. component

WIL Infrastructure and
Component code templates

Main Sequence of Steps Traceable Design EvolutionSupporting Data & Structures

Figure 2. WIL Design Method

Paper to appear in, Proceedings of the 46th Annual Meeting of the Human Factors & Ergonomics Society, 30 Sep-4 Oct, 2002, Baltimore, Md.

8

Analysis/Design Wizard
Work-Environment
And WIL Design
Data Repository

Reference Architec-
Ture Components &

infrastructure

Work-Centered
Interface Software

Interface engineer

Work Environment
Software & DBs
(or emulations)

Middleware

Collaboration/
communication

software
engineer

• Customize
code

WIL Software
Repository

System
Design &
Software

Repository

• describe work domain
• determine WIL

functions
• capture work domain

knowledge & data

• Define WIL processing arch.
• Design & rough-out GUI
• Generate prototype WIL

Specification &
Development Tools

Figure 3. WAT Conceptual Organization

